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Simulation of Stochastic Differential Equations
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A new local linearization (LL) scheme for the numerical integration of non-
autonomous multidimensional stochastic differential equations (SDEs) with
additive noise is introduced. The numerical scheme is based on the local
linearization of the SDE's drift coefficient by means of a truncated Ito�Taylor
expansion. A comparative study with the other LL schemes is presented which
shows some advantanges of the new scheme over other ones.

KEY WORDS: Local linearization method; stochastic differential equations;
numerical solutions.

1. INTRODUCTION

In recent years Stochastic Differential Equations (SDEs) have been
increasingly used in modeling complex physical phenomena (see, i.e., ref. 5
and references in ref. 9). Since analytic solutions are rarely available in
practical situations, numerical methods to approximate their solutions are
required. Up to now a great variety of such numerical methods has been
developed (see, i.e., extensive surveys in refs. 5 and 8, and comparative
studies by simulations in refs. 7 and 13).

The common theoretical basis of these methods is the stochastic Ito�
Taylor expansion of the solution in terms of multiple Wiener integrals.(5) In
spite of the well known convergence properties achieved by means of this
approach, two limitations have been pointed out: (10, 12) (1) this approach

587

0022-4715�99�0200-0587�16.00�0 � 1999 Plenum Publishing Corporation

1 Centro de Neurociencias de Cuba, Apartado 6880, Havana, Cuba.
2 Institute of Policy and Planning Sciences, University of Tsukuba, Tsukuba, Ibaraki 305,

Japan.
3 Institute of Statistical Mathematics, 4-6-7 Minami Azabu, Minato-ku, Tokyo 106, Japan.



does not give exact solutions for linear ordinary differential equations (i.e.,
linear SDEs with diffusion coefficient equal to zero), and (2) numerical
solutions do not always preserve the qualitative characteristics of the exact
solutions. In particular, there are many examples of SDEs with bounded
trajectories in which, for any fixed stepsize of the time discretization, the
numerical solution becomes explosive when the initial value is in a certain
region of the phase space.(10, 2)

An alternative method that attempts to overcome these limitations,
called the Local Linearization (LL) method, was introduced at an early
stage by Ozaki in 1985.(10, 11) It is based on heuristics directed to obtain an
explicit scheme for the numerical solution of the autonomous multidimen-
sional SDE with additive noise

dx(t)= f (x) dt+dW(t), x(t0)=x0 , and W a Wiener process

in the form of a multivariate autoregressive time series with state-depen-
dent coefficients (it does not involve a stochastic Taylor expansion of
the solution of the SDE). But, such formulation of the LL method is
ambiguous in regard to the discretization of a random term that appears
in the numerical scheme and it does not provide a unique solution for
multidimensional SDE.(2) Nevertheless, the original LL scheme gives good
results in the simulations of scalar SDEs.

Recently, the LL method was independently reconsidered by Biscay et
al.(2) and Shoji and Ozaki.(15�17) They introduced new formulations of the
LL method oriented to clarify the heuristics of the original one.

The formulation of the LL method by Biscay et al.(2) is derived from
the following steps: (1) the local linearization of the drift and diffusion coef-
ficients of the SDE in each interval of time [t, t+h] by means of their first
order deterministic Taylor expansions, (2) the analytic computation of the
solution of the resulting linear SDE, and (3) the approximation of the Ito's
integral involved in the solution obtained in the step (2) by means of the
simple Trapezoidal rule. This formulation overcomes the previously men-
tioned shortcomings of the original approach, and allows the LL method
to be extended to the case of scalar non-autonomous SDEs with multi-
plicative noise,

dx(t)= f (t, x) dt+ g(t, x) dW(t), x(t0)=x0 # R

and also to the case of multidimensional non-autonomous SDEs with
additive noise,

dx(t)= f (t, x) dt+ g(t) dW(t), x(t0)=x0 (1)
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where x(t) # Rd, g(t) # Rd_m, and W is an m-dimensional Wiener process.
The explicit scheme derived from this formulation for the equation (1)
will be referred as the B-LL scheme. In a comparative study with strong
numerical schemes, (2) some advantages of the B-LL scheme are demon-
strated. However, it has also shown that the B-LL scheme converges
strongly with an order lower than the order of some of the other ones.

The formulation of the LL method by Shoji and Ozaki(15�17) is derived
from the following steps: (1) the local linearization of the drift coefficient
f in each interval [t, t+h] by applying the Ito formula to f, (2) the
analytic computation of the solution of the resulting linear SDE, and
(3) the substitution of the Ito's integral involved in the solution obtained
in the step (2) by a Gaussian white noise. This was initially proposed for
scalar autonomous SDEs with additive noise, (15) and it was generalized
later to autonomous multidimensional equations with additive noise.(16, 17)

As result of the step (1), the linear approximation derived for f differs of
that obtained by the former formulations in a term involving the second
derivatives of f. Although this formulation of the LL method also over-
comes the shortcomings of the original approach, the authors propose a
numerical scheme that is not always computational feasible (it can fail for
SDEs for which the Jacobian matrix of the drift coefficient is singular or ill-
conditioned in at least a point).

In this paper a new LL scheme for multidimensional non-autonomous
SDE with additive noise is introduced. It is proposed as a computational
feasible alternative to the Shoji�Ozaki scheme as well as an alternative to the
B-LL scheme with greater order of strong convergence. The new scheme
essentially combines the approximations that the Shoji�Ozaki formulation
and the Biscay et. al. formulation provide, respectively, for the drift coefficient
f and for the resulting Ito's integral of the step (2) of both formulations.

In Section 2, the new scheme is derived from the following steps: (1) the
local linearization of the drift coefficient f in each interval [t, t+h] by
means of a truncated Ito�Taylor expansion of f, (2) the analytic computa-
tion of the solution of the resulting linear SDE, and (3) the approximation
of the Ito's integral involved in the solution obtained in the step (2) by
means of the composite Trapezoidal rule. The step (1) here leads to the
same approximation to the drift coefficient f as the step (1) of the Shoji�
Ozaki formulation but it constitutes a more rigorous theoretical derivation
of such approximation. In addition, the similarities and differences between
the new LL scheme and the older ones are remarked in this section. In the
last section is demonstrated, by means of simulation, that the accuracy and
order of convergence of the new scheme are better than those shown by the
other computational feasible LL scheme for non-autonomous SDEs: the
B-LL scheme.
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2. LOCAL LINEARIZATION SCHEMES FOR SDE WITH
ADDITIVE NOISE

Consider the multidimensional non-autonomous SDE with additive
noise (1). The standard conditions for the existence and uniqueness of a
strong solution are assumed. In addition, let the function f be twice con-
tinuously differentiable with respect to variable x, and the functions f and
g be continuously differentiable with respect to variable t.

Let t be any fixed number in [t0 , T ] and A=[v, (0),..., (m)] be a
hierarchical set, (5, 6) where v denotes the multi-index of length zero. Let

f (s, x(s))= f (t, x(t))+L0f (t, x(t)) |
s

t
du+ :

m

j=1

L jf (t, x(t)) |
s

t
dW j (u)+Rf

(2)

and

x(s)=x(t)+ f (t, x(t)) |
s

t
du+ g(t) |

s

t
dW(u)+Rx (3)

be, respectively, the stochastic Ito�Taylor expansions of function f and x
with the hierarchical set A.(5, 6) Here Rf and Rx are the remainder terms,

L jf =(L jf 1,..., L jf d ), for j=0,..., m and f =( f 1,..., f d )

L0f i=
�f i

�t
+ :

d

k=1

f k �f i

�xk+
1
2

:
d

k, l=1

:
m

j=1

gk, jgl, j �2f i

�xk �xl , for i=1 } } } d

and

L jf i= :
d

k=1

gk, j �f i

�xk , for i=1 } } } d and j=1 } } } m

Combining expansions (2) and (3), and removing the remainder
terms, it is found that

f (s, x(s))r f (t, x(t))

+\�f (t, x(t))
�t

+
1
2

:
d

k, l=1

[ g(t) g�(t)]k, l �2f (t, x(t))
�xk �x l + (s&t)

+Jf (t, x(t))(x(s)&x(t)) (4)

where Jf is the Jacobian matrix of function f and g�(t) denotes the trans-
pose of matrix g(t).
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The linearization of the function f (given by the right side of expres-
sion (4)) in the expression (1) leads to the linear SDE

dX(s)=(A(t) X(s)+a(s, t)) ds+ g(s) dW(s) (5)

where

A(t)=Jf (t, X(t))

and

a(s, t)= f (t, X(t))

+\�f (t, X(t))
�t

+
1
2

:
d

k, l=1

[ g(t) g�(t)]k, l �2f (t, X(t))
�X k �X l + (s&t)

&Jf (t, X(t)) X(t)

Let h be a positive number. Since Eq. (5) is an approximation of equa-
tion (1) for s # [t, t+h], its exact solution at the point s=t+h given by(1)

X(t+h)=.(t+h)

_\X(t)+|
t+h

t
.&1(u) a(u, t) du+|

t+h

t
.&1(u) g(u) dW(u)+

(6)

is an approximation to the solution of Eq. (1) at this point. Here .(u)=
exp(A(t)(u&t)).

After some algebraic manipulations, expression (6) can be written as

X(t+h)=X(t)+8(t, X(t); h)+!(t, X(t); h) (7)

where

!(t, X(t); h)=|
t+h

t
.(2t+h&u) g(u) dW(u) (8)

is a stochastic process with zero mean and variance

7!(t, X(t); h)=E(!(t, X(t); h) !�(t, X(t); h))

=|
t+h

t
.(2t+h&u) g(u) g�(u) .�(2t+h&u) du (9)
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and

8(t, X(t); h)=r0(Jf (t, X(t)), h) f (t, X(t))

+(hr0(Jf (t, X(t)), h)&r1(Jf (t, X(t)), h))

_\�f (t, X(t))
�t

+
1
2

:
d

k, l=1

[ g(t) g�(t)]k, l �2f (t, X(t))
�X k �X l + (10)

with

rn(M, a)=|
a

0
exp(Mu) un du (11)

for any positive number a and square matrix M.
Since the integral involved in the definition of ! is a Ito integral, then

!(t, X(t); h)=9(t+h) W(t+h)&9(t) W(t)&|
t+h

t
9 $(u) W(u) du

where 9(u)=.(2t+h&u) g(u) and 9 $ denotes the derivative of 9 with
respect to u.(14)

Applying the well-known composite Trapezoidal rule(3) to the integral
in the last expression, the following approximation to ! is obtained

!� (t, X(t); h)=9(t+h) W(t+h)&9(t) W(t)

&
h
2r

:
r&1

k=0

[9 $(_k+1) W(_k+1)+9 $(_k) W(_k)] (12)

where _k=t+k(h�r), and r is an integer number such that rt1�h.
Finally, the Local Linearization scheme that approximates the solu-

tion of (1) is defined by the iterative computation of the expression

Xtn+1
=Xtn

+8(tn , Xtn
; h)+!� (tn , Xtn

; h) (13)

at the discrete times tn=t0+nh, n=0, 1, 2,..., starting from Xt0
=x0 . The

integrals r0 and r1 in 8 are computing as in ref. 2 by using the Shur method
to evaluate matrix functions.
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The LL scheme (13) reduces to the B-LL scheme

Xtn+1
=Xtn

+r0(Jf (tn , Xtn
), h) f (tn , Xtn

)

+(hr0(Jf (tn , Xtn
), h)&r1(Jf (tn , Xtn

), h))
�f (tn , Xtn

)

�t

+9(tn+1) W(tn+1)&9(tn) W(tn)

&
h
2

[9 $(tn+1) W(tn+1)+9 $(tn) W(tn)] (14)

for linear SDEs by setting r=1 in expression (12). Comparing Eqs. (13)
and (14) can be see that the differences between the new LL scheme and
the B-LL scheme are: (1) an additional term which involve the second
derivatives of the drift coefficient, and (2) different Trapezoidal integration
rules.

On the other hand, the Shoji�Ozaki scheme for autonomous SDEs is
obtained from expression (7) by integrating by part the integrals r0 and r1

in 8 and replacing the process ! by a Gaussian process ' with zero mean
and variance 7'(X(s); h)r7!(X(s); h) for s # [t, t+h). Thus, the numerical
scheme is defined by the iterative computation of the expression

Xtn+1
=Xtn

+J &1
f (Xtn

)(exp(hJf (Xtn
))&I ) f (Xtn

)

+J &2
f (Xtn

)(exp(hJf (Xtn
))&I&hJf (Xtn

)) M(Xtn
)+'(Xtn

; h)

at the discrete times tn=t0+nh, n=0, 1, 2,..., starting from Xt0
=x0 . Here,

I is the identity matrix, M(Xtn
) is the trace of the matrix 1

2 gg�H(Xtn
), and

H(Xtn
) is the Hessian matrix of f at the point Xtn

. The variance 7' of the
process ' is defined by the numerical solution of the linear equation

Jf (X ) 7'(X ; h)+7'(X ; h) J �
f (X )=exp(hJf (X )) gg� exp(hJ �

f (X ))& gg�

which is obtained by integrating by part the integral in (9). However, this
numerical scheme is not always computational feasible since it can fail for
SDE for which the Jacobian matrix J &1

f (X ) is singular or ill-conditioned in
at least a point.

It is worth noting that numerical solutions obtained from LL schemes
coincide with the exact solutions in the case of linear SDEs with zero
noise (g#0), i.e., such schemes are exact for linear ordinary differential
equations.
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3. NUMERICAL TESTS

The performance of the LL method for the numerical solution of
nonlinear SDE has been illustrated in a number of papers (see refs. 10, 11,
12, and 2). A comparative study between the B-LL scheme and the best
classical strong schemes has also been carried out, (2) demonstrating some
advantages of the B-LL scheme over the other ones. However, it has also
demonstrated that the B-LL scheme converges strongly with a global order
;=2, while some of the other ones converge with a global order ;=3. In
this section is shown, by means of simulations, that the LL scheme (13)
introduced in Section 2 converge strongly with a global order ;=3. We
will refer to this scheme as the N-LL scheme.

Denote by E( ) the mathematical expectation. By definition, (13) a numer-
ical scheme Xtn

converges strongly with global order ; if

E( |x(T )&XtN
| 2 | x(t0)=Xt0

=x0)=O(h ;) (15)

for tN=t0+Nh=T>>t0 and maximum stepsize h<1. Usually, the left
term of the above expression is called global error to distinguishing of the
local error E( |x(tn)&XtN

|2 | x(tn&1)=Xtn&1
). Note that there is another

definition of global order ;$ of strong convergence given by
E( |x(T )&XtN

| | x(t0)=Xt0
=x0)=O(h ;$) (4) but, it holds that ;=2;$.(5) In

this paper we use the definition (15) to maintain the same definition of the
previous simulations works.(2, 13)

To take into consideration the effect of the realization of the exact
solution by means of pseudo-random numbers generated in a digital com-
puter, the global error is decomposed as in refs. 2 and 13:

E( |x(T )&XtN
| 2 | x(t0)=Xt0

=x0)

�E( |x(T )&X� tN
|2 | x(t0)=X� t0

=x0)+E( |X� tN
&XtN

|2 | X� t0
=Xt0

=x0)

where X� is the discretized exact solution realized by using pseudo-random
numbers. X� is computed from the expression of the exact solution by
replacing the stochastic integrals by the same type of discrete approxima-
tion used in the derivation of the numerical scheme, i.e., the approximation
(12).

Since in refs. 2 and 13, the quantity DE=E( |X� tN
&XtN

|2 | X� t0
=Xt0

=x0),
called the deterministic part of the error, is used to estimate statistically
the order ; of the global error. The estimated order ;� is obtained from
the slope of the straight line fitted to the set of points [(log2(hi),
log2(DE@(h i))] i=1,..., p , where DE@(hi) is the estimated of DE corresponding
to the stepsize hi .
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For each h, DE@(h) is computed as in refs. 5 and 6. For it, the simula-
tions are arranged into M batches of K trajectories of X� tN

each. Let

DE@
i, j (h)=|X� i, j

tN
&X i, j

to+Nh | 2

be the square error at the end of the interval [to , T ] for the j th trajectory
of the i th batch and let

DE@
i (h)=

1
K

:
K

j=1

DE@
i, j (h), and DE@(h)=

1
M

:
M

i=1

DE@
i (h)

be the sample means of the i th batch and of all batches, respectively. From
the Student's t-distribution with M&1 degrees of freedom, a 100(1&:)0
confidence interval for DE(h) has the form

(DE@(h)&2, DE@(h)+2)

where

2=t1&:�2, M&1 �_̂2
DE

M
, _̂2

DE=
1

M&1
:
M

i=1

|DE@
i (h)&DE@(h)|2

t1&:�2, M&1 is determined from the Student's t-distribution with M&1
degree of freedom and 0<:<1.

In the following examples the global order ; of convergence of the
B-LL and N-LL schemes are estimated. For each example the estimated
value of DE and its 900 (:=0.1) confidence interval are computed for the
stepsizes hi=2&(i+4) with i=1,..., 4. The simulations are arranged into
M=20 batches of N=100 trajectories each to obtain small confidence
intervals.

Example 1. An scalar autonomous SDE (Example 4.53 in ref. 5).

Let

dx(t)=(exp(&x(t))+1) dt+ 5
2 dW(t), t # [0, 1], x(0)= 1

2

be a scalar autonomous SDE, and

x(t)=
1
2

+t+
5
2

W(t)+ln \1+|
t

0
exp \&

1
2

&u&
5
2

W(u)+ du+
its exact solution.
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File: 822J 224810 . By:XX . Date:19:02:99 . Time:08:28 LOP8M. V8.B. Page 01:01
Codes: 2284 Signs: 1365 . Length: 44 pic 2 pts, 186 mm

Table I. Estimated Values of DE and Their Respective 900 Confidence
Intervals Obtained for Each Scheme in Example 1

B-LL scheme N-LL scheme

h DE@(h) \2 h DE@(h) \2

2&5 0.00024535 \0.00002299 2&5 0.0000260404 \0.0000045884
2&6 0.00006396 \0.00000470 2&6 0.0000035891 \0.0000004423
2&7 0.00001620 \0.00000102 2&7 0.0000005356 \0.0000000953
2&8 0.00000376 \0.00000023 2&8 0.0000000582 \0.0000000050

Table I presents the estimated values of DE and their respective 900
(:=0.1) confidence intervals for each scheme. Figure 1 shows the straight
line fitted to the points [(log2(hi), log2(DE@(hi))]i=1,..., 4 corresponding
to each numerical scheme. The estimated slope of these lines (with 900
confidence interval) are ;� =2.00\0.08 for the B-LL scheme and
;� =2.91\0.20 for the N-LL scheme. Note that the straight line corre-
sponding to the N-LL scheme is completely under the other one, what
means that the N-LL scheme shows better accuracy.

Fig. 1. Estimated values of DE obtained from the B-LL scheme (+) and the N-LL scheme
(b) solutions of the Example 1 corresponding to the stepsizes hi=2&(i+4) with i=1,..., 4. The
estimated slope from least-squares line fitting of the points (log2(hi), log2(DE@(hi)) are, respec-
tively, ;� =2.00\0.08 and ;� =2.91\0.20 with a 900 confidence intervals. The coefficient of
correlation between the variables log2(h) and log2( DE@(h)) is R>0.9989 for each numerical
scheme.
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Example 2. A two-dimensional autonomous SDE

Let

_dx1(t)
dx2(t)&=_ f1(x1 , x2)

f2(x1 , x2)& dt+G _dW1(t)
dW2(t)& , t # [0, 1], _x1(t0)

x2(t0)&=_0.5
0.5&

be a two-dimensional autonomous SDE, where

f1(x1 , x2)=exp(&2x1(t)&x2(t))&exp(&x1(t)&x2(t))

f2(x1 , x2)=2 exp(&x1(t)&x2(t))&exp(&2x1(t)&x2(t))+1

and

G=
5
2 _

&1
2

1
&1&

Its exact solution is given by

_x1(t)
x2(t)&=_ z2(t, x2(t0)�2)&z1(t, x1(t0)+x2(t0)�2)

2z1(t, x1(t0)+x2(t0)�2)&z2(t, x2(t0)�2)&
where

zi (t, C )=C+t+
5
2

Wi (t)+ln \1+|
t

0
exp \&C&u&

5
2

Wi (u)+ du+
Table II presents the estimated values of DE for the two schemes.

Figure 2 shows, for each numerical scheme, the straight line fitted to the
points [(log2(hi), log2(DE@(hi))] i=1,..., 4 for each variable. The estimated
slopes of these lines are presented in Table III. These results show that the
accuracy and order of convergence of the N-LL scheme are significantly
better for both variables.

Example 3. A two-dimensional non-autonomous SDE (Example 3
in ref. 2).

Let

_dx1(t)
dx2(t)&=_ f1(t, x1 , x2)

f2(t, x1 , x2)& dt+_g1(t)
g2(t)& dW(t), t # [2, 3], _x1(t0)

x2(t0)&=_ 1
50&

597Simulation of Stochastic Differential Equations



File: 822J 224812 . By:XX . Date:19:02:99 . Time:08:29 LOP8M. V8.B. Page 01:01
Codes: 2008 Signs: 1117 . Length: 44 pic 2 pts, 186 mm

Table II. Estimated Values of DE and Their Respective 900 Confidence
Intervals Obtained for the Variables X1 and X2 of Example 2

for Each Numerical Scheme

B-LL scheme N-LL scheme

h DE@(h) \2 h DE@(h) \2

2&5 0.000011147 \0.000001154 2&5 0.0000011949 \0.0000001854
2&6 0.000002838 \0.000000151 2&6 0.0000001637 \0.0000000193
2&7 0.000000672 \0.000000031 2&7 0.0000000209 \0.0000000016
2&8 0.000000163 \0.000000007 2&8 0.0000000025 \0.0000000002

2&5 0.00025113 \0.00002572 2&5 0.000023931 \0.000004516
2&6 0.00006085 \0.00000404 2&6 0.000003322 \0.000000426
2&7 0.00001421 \0.00000098 2&7 0.000000510 \0.000000100
2&8 0.00000370 \0.00000026 2&8 0.000000054 \0.000000005

Fig. 2. Estimated values of DE obtained from the B-LL scheme (+) and the N-LL scheme
(b) solutions of the Example 2 corresponding to the stepsizes hi=2&(i+4) with i=1,..., 4. (a)
for variable x1 and (b) for variable x2 . See in Table III the estimated slope ;� from least-
squares line fitting of the points (log2(hi), log2(DE@(hi)) for each variable and numerical
scheme. The coefficient of correlation between the variables log2(h) and log2(DE@(h)) is
R>0.9986 for each variable and numerical scheme.
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Table III. Estimated Slopes ;� from Least-Squares
Line Fitting of the Stepsize-Error Points of

Fig. 2 Corresponding to Example 2
(with 900 Confidence Intervals)

Variable"scheme B-LL N-LL

x1 2.03\0.04 2.96\0.08
x2 2.03\0.06 2.90\0.22

be a two-dimensional non-autonomous SDE, where

f1(t, x1 , x2)=C exp \&
x1(t)

C +
f2(t, x1 , x2)=

C
t2 exp \&

x1(t)
C ++4 \x2(t)&

x1(t)
t2 + cos(t)

(2+sin(t))
&2

x1(t)
t3

g1(t)=- 2 C

g2(t)=- 2 C \1
t2+

D(2+sin(t))4

(t+1) +
Its exact solution is given by

_x1(t)
x2(t)&

=_
- 2 C \W(t)+

1

- 2
ln } exp \x1(t0)

C ++|
t

t0

exp(&- 2 W(u)) du }+
x1(t)

t2 +D(2+sin(t))4 \x2(t0)&
x1(t0)

t2
0

+- 2 C |
t

t0

dW(u)
u+1 + &

where C=30�- 2 and D=(2+sin(t0))&4.
As in the previous examples, estimated values of DE and ; are

computed for both schemes. Tables IV and V present, respectively these
estimates. Figure 3 shows, for each numerical scheme, the straight line fitted
to the points [(log2(h i), log2(DE@(h i))] i=1,..., 4 for each variable. It is observed
that the accuracy and order of convergence of the N-LL scheme are
significantly better for both variables.
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File: 822J 224814 . By:XX . Date:19:02:99 . Time:08:29 LOP8M. V8.B. Page 01:01
Codes: 1990 Signs: 1080 . Length: 44 pic 2 pts, 186 mm

Table IV. Estimated Values of DE and Their Respective 900 Confidence
Intervals Obtained for the Variables X1 and X2 of Example 3

for Each Numerical Scheme

B-LL scheme N-LL scheme

h DE@(h) \2 h DE@(h) \2

2&5 0.016643 \0.000786 2&5 0.00137588 \0.00014601
2&6 0.003972 \0.000153 2&6 0.00018284 \0.00001459
2&7 0.000960 \0.000033 2&7 0.00002385 \0.00000183
2&8 0.000242 \0.000008 2&8 0.00000290 \0.00000016

2&5 0.00054572 \0.00002554 2&5 0.0000548114 \0.0000060337
2&6 0.00014046 \0.00000468 2&6 0.0000075729 \0.0000006281
2&7 0.00002923 \0.00000091 2&7 0.0000007748 \0.0000000616
2&8 0.00000676 \0.00000022 2&8 0.0000000841 \0.0000000049

Fig. 3. Estimated values of DE obtained from the B-LL scheme (+) and the N-LL scheme
(b) solutions of the Example 3 corresponding to the stepsizes hi=2&(i+4) with i=1,..., 4. (a)
for variable x1 and (b) for variable x2 . See in Table V the estimated slope ;� from least-squares
line fitting of the points (log2(hi), log2( DE@(hi)) for each variable and numerical scheme. The
coefficient of correlation between the variables log2(h) and log2( DE@(h)) is R>0.9991 for each
variable and numerical scheme.
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Table V. Estimated Slopes ;� from Least-Squares
Line Fitting of the Stepsize-Error Points of

Fig. 3 Corresponding to Example 3
(with 900 Confidence Intervals)

Variable"scheme B-LL N-LL

x1 2.03\0.04 2.96\0.05
x2 2.12\0.12 3.13\0.19

4. CONCLUSIONS

A new Local Linearization scheme for the numerical integration of
Stochastic Differential Equations (SDEs) with additive noise was intro-
duced. The numerical scheme is based on the local linearization of the
SDE's drift coefficient by means of a truncated Ito�Taylor expansion. Some
advantages of the new scheme over the other LL schemes were pointed out.
The simulation study carried out demonstrates that new scheme has better
accuracy and order of strong convergence.
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